Modeling tropospheric impacts of the 2011 record Arctic ozone hole (Event attribution study to determine causes of record positive surface NAM index in spring of 2011)

Judith Perlwitz (CIRES/University of Colorado and NOAA/ESRL/PSD)
In collaboration with Alexey Karpechko (FMI) and Elisa Manzini (MPI Hamburg)

Motivation

- Stratospheric and tropospheric circulations are closely coupled both upward and downward
- Stratospheric events impact tropospheric weather and climate
 - Major stratospheric sudden warming events are followed by negative Northern Hemisphere Annular Mode events that can last up to two months.
 - Over the last three decades, Antarctic ozone depletion caused a shift of the Southern Hemisphere annular mode toward its positive phase during summer.
- The spring of 2011 was characterized by record climate events in both the stratosphere and troposphere - Are they connected?

Record Arctic ozone loss in 2011 comparable in size to average Antarctic ozone hole

Arctic Ozone in 2011 was outside the range of the 2005-2010 winter observations, and almost as low as Antarctic ozone.

Record positive value of NAM/NAO index in April 2011

Observed evolution of polar cap temperatures and geopotential heights in 2011

NAO: -0.88 0.70 0.61 2.48*

-1.68 1.57 1.42 2.27* NAM:

Source: CPC

Was the Arctic ozone hole the primary driver of the record tropospheric circulation event?

Modeling study in the spirit of the event attribution approach

Four experiments with AGCM MA-ECHAM5:

- CTRL: 50 years; AMIP2 SST/SIC clim.; Fortuin-Kelder O3 clim.
- R-O3: 50 runs from Sep 1 to Apr 30; SST/SIC as in CTRL; Fortuin- Kelder O3 + MERRA O3 anomaly 2010/2011 for NH
- R-SST: 50 runs from Sep 1 to Apr 30; AMIP2
 SST/SIC climatology + HadISST 2010/2011 anomaly;
 O3 as in CTRL
- R-ALL: 50 runs from Sep 1 to Apr 30; SST/SIC as in R-SST; O3 as in R-O3

Prescribed March Ozone anomaly

Dec-Mar 2010/2011 SST anomalies

Monthly evolution of mid-latitude (50-70N) zonal wind response

Downward progression of positive mid-latitude zonal mean zonal wind anomalies during March/April which is strongest in the R-All simulation

NAM impact during mid-March to mid-April

- Shift of NAM index toward positive phase in all three experiments with shift being largest in R-All
- The combined forcing by the observed ozone and SST anomalies
 - \triangleright Doubles the probability of large (> 1 σ) positive NAM events in March/April in the model

What did enhance the possibility of occurrence of most extreme NAM events in the model?

What did enhance the possibility of occurrence of most extreme NAM events in the model?

Tropospheric pre-conditioning via positive NAM phase in February in consistency with observations

Summary

- ➤ Arctic ozone losses reached record 80% at 18-20 km by early spring 2011
- ➤ It was followed by record positive NAM conditions in the troposphere
- ➤ A climate model forced by the observed ozone depletion shows only weak positive NAM response
- ➤ The combined forcing by ozone depletion and lower boundary conditions doubled the chance for an occurrence of an extreme NAM event
- ➤ Pre-conditioned troposphere is likely a pre-requisite for extreme spring NAM response

Implications

- Coupled ocean-troposphere-stratosphere system needed to explain the occurrence of tropospheric circulation extremes in spring 2011
- Improving predictability of such events requires models that include stratospheric ozone chemistry to properly simulate chemistry-climate feedbacks
- Ozone loss in 2011 was initiated by very cold stratospheric winter (Jan-Feb) polar vortex leading to the formation of PSCs with subsequent ozone loss ->Talk of C. Long for capability of CFSv2 to simulate observed extreme polar stratospheric temperature events

Implications

- Coupled ocean-troposphere-stratosphere system needed to explain the occurrence of tropospheric circulation extremes in spring 2011
- Improving predictability of such events requires models that include stratospheric ozone chemistry to properly simulate chemistry-climate feedbacks
- Ozone loss in 2011 was initiated by very cold stratospheric winter (Jan-Feb) polar vortex leading to the formation of PSCs with subsequent ozone loss ->Talk of C. Long for capability of CFSv2 to simulate observed extreme polar stratospheric temperature events

Backup Slides

In the SH, Antarctic Ozone hole strongly impacted tropospheric circulation during summer

Thompson and Solomon, 2002

Lower stratosphere temperature in winter 2011

Number of days below threshold for activation of Polar Stratospheric Clouds over several lower stratospheric levels combined

